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1. Introduction

One of the main motivations for the study of superconformal (2, 0) theories in six di-

mensions is their relation to maximally supersymmetric N = 4 Yang-Mills theory in four

dimensions [1 – 5]. This viewpoint provides an important insight into the S-duality of

the four-dimensional theory [6 – 8], since the electrically and magnetically charged parti-

cles are interpreted as different windings of self-dual strings on the compactification torus.

S-duality then becomes a simple consequence of the SL(2, Z) modular invariance.

Another intriguing connection between these theories is the following: In the four-

dimensional N = 4 Yang-Mills theory, there are two important observables that have

attracted much interest recently. These are the Wilson operator and its dual, the ’t Hooft

operator, which both are associated with closed spatial curves. From the six-dimensional

perspective, these should correspond to different windings of a single type of BPS surface

observable in (2, 0) theory [9 – 12]. The connection between the Wilson and the ’t Hooft

operators is also indicated by the results in refs. [13, 14].

The study of BPS Wilson loops in N = 4 supersymmetric Yang-Mills theory is also

motivated from the AdS/CFT correspondence [15 – 17]. This viewpoint provides impor-

tant information about string theory on AdS5 × S5. Similarly, the study of BPS surface

observables in (2, 0) theory might be related to quantities in M -theory on AdS7 × S4.

The purpose of the present paper is to investigate in what way the superconformal

group OSp(8∗|4) is broken if a spatial two-dimensional flat surface is introduced in the

(2, 0) superspace. This is inspired by the work in ref. [18], where it is shown that a line in

four-dimensional N = 4 Yang-Mills theory breaks the superconformal group PSU(2, 2|4) to

the subgroup OSp(2, 2|4). We will use the results obtained in refs. [19, 20] to simplify the

treatment of the superconformal transformations, and we expect that the results obtained

here will be useful in future studies of surface operators in (2, 0) theory.

The outline of this paper is as follows: section 2 reviews the superconformal group

and the transformations therein, focusing on the possibility of a linear formulation in a

superspace with eight bosonic and four fermionic dimensions. In section 3, we introduce a
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way of breaking the superconformal symmetry of the theory and show that the remaining

unbroken symmetry leaves a two-dimensional surface invariant. Finally, section 4 contains

an attempt to describe this surface from an eight-dimensional perspective.

2. The superconformal group

Consider the supergroup OSp(8∗|4), which is the superconformal group relevant for (2, 0)

theory in six dimensions [21, 22]. By definition, this group leaves the inner product

y · z ≡ IAByAzB (2.1)

invariant. In this relation, yA and zB denote coordinate vectors in a superspace with

eight bosonic and four fermionic dimensions, while the graded symmetric tensor IAB is the

corresponding (inverse) metric. The superindices and the metric will be further explained

below.

The generator of superconformal transformations is denoted by JAB, which is graded

antisymmetric and obeys the (anti)commutation relations

[

JAB, JCD

}

= −1

2

(

IBCJAD − (−1)ABIACJBD − (−1)CDIBDJAC +(−1)AB+CDIADJBC

)

, (2.2)

where the bracket in the left hand side is an anticommutator if both its entries are fermionic,

otherwise it is a commutator. A factor (−1)A is positive if A is a bosonic index, and negative

if it is fermionic.

The corresponding coordinate transformation is given by

δyA = −πCDyCIDA, (2.3)

where the graded antisymmetric quantity πCD contains the infinitesimal parameters. It is

easily verified that a transformation of this form indeed leaves the inner product in eq. (2.1)

invariant.

It is illustrative to decompose the quantities introduced above into more familiar

ones [23, 19, 20]. The coordinate vector may be written as yA = (yα̂, ya) = (yα, yα, ya). In

this expression, the bosonic index α̂ = (1, . . . , 8) is a chiral SO(6, 2) spinor index, which

may be further decomposed into one chiral SO(5, 1) spinor index α = (1, . . . , 4) (subscript)

and one anti-chiral SO(5, 1) spinor index α = (1, . . . , 4) (superscript). Finally, the fermionic

index a = (1, . . . , 4) is an SO(5) spinor index.

In this notation, the superconformal generators become [24, 23]

JAB =









1
2αβ

1
2M β

α + 1
4δ β

α D i

2
√

2
Qb

α

−1
2M α

β − 1
4δ α

β D −1
2Kαβ i

2
√

2
ΩbcSα

c

− i

2
√

2
Qa

β − i

2
√

2
ΩacSβ

c iUab









, (2.4)

while the superspace metric is written as

IAB =







0 δ β
α 0

δα
β 0 0

0 0 iΩab






. (2.5)
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Together with eq. (2.2), these definitions reproduce all commutation relations of the six-

dimensional superconformal algebra with conventions as in ref. [23]. We have also intro-

duced the SO(5) invariant antisymmetric tensor Ωab in the purely fermionic piece of the

superspace metric.

In the inner product defined in eq. (2.1), the inverse superspace metric appears, i.e.,

the metric with superscript indices. This is written as

IAB =







0 δα
β 0

δ β
α 0 0

0 0 −iΩab






(2.6)

in this basis, which makes the relation

IABIBC = δC

A
(2.7)

valid (which is essential if we want to raise and lower indices). This requires that ΩabΩ
bc =

δ c
a .

3. Breaking the superconformal symmetry

Consider the subgroup H ⊂ OSp(8∗|4) which leaves the product

y ◦ z ≡ ÎAByAzB (3.1)

invariant. In this expression, we demand the matrix ÎAB to satisfy

IAB ÎAB = 0

IBC ÎAB ÎCD = IAD.
(3.2)

Explicitly, we choose our basis such that

ÎAB =























0 0 δα̇
β̇

0 0 0

0 0 0 −δά

β́
0 0

δ β̇
α̇ 0 0 0 0 0

0 −δ β́
ά 0 0 0 0

0 0 0 0 εȧḃ 0

0 0 0 0 0 −ε
áb́























, (3.3)

where all indices in the matrix are fundamental SU(2) indices, taking the values 1 and 2.

In this basis, the SO(5) invariant tensor is written as

Ωab =

(

iε
ȧḃ

0

0 iε
áb́

)

, (3.4)

where the antisymmetric SU(2) invariant tensor ε
ȧḃ

is defined such that ε12 = 1. This

means that we have decomposed the SO(5, 1) spinor indices according to α = (α̇, ά), but
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also the SO(5) spinor index as a = (ȧ, á). In total, this leaves us with six different SU(2)

indices. Note that the indices denoted by Greek letters, originating from the bosonic piece

of the superindex, may not be raised or lowered; superscript and subscript indices indicate

different representations.

Comparing the expression for ÎAB in eq. (3.3) with the inverse superspace metric IAB

in eq. (2.6), we see that they differ only by some signs. The inspiration for this may

be found in ref. [25], where the R-symmetry group SO(5) is spontaneously broken to

SO(4) ' SU(2) × SU(2) by selecting a specific unit vector Φ̂ab as

Φ̂ab =

(

iεȧḃ 0

0 −iεáb́

)

. (3.5)

The quantity in eq. (3.3) generalizes this idea to the entire superconformal space. Specif-

ically, we note that eq. (3.2) is analogous to the relation ΩabΦ̂
ab = 0 from ref. [25], which

makes Φ̂ab an SO(5) vector.

To investigate the properties of the subgroup H, let us see which OSp(8∗|4) generators

leave the product in eq. (3.1) invariant. By applying the transformation in eq. (2.3), we

find that the product is invariant if the generator JAB is of the form

ĴAB =



























J
α̇β̇

0 J β̇
α̇ 0 J ḃ

α̇ 0

0 J
άβ́

0 J β́
ά 0 J b́

ά

J α̇
β̇

0 J α̇β̇ 0 J α̇ḃ 0

0 J ά

β́
0 J άβ́ 0 J άb́

J ȧ
β̇

0 J ȧβ̇ 0 J ȧḃ 0

0 J á

β́
0 J áβ́ 0 J áb́



























. (3.6)

By rearranging the indices, this matrix is easily brought to a block-diagonal form, indicating

that the subgroup H is a product of two identical groups; one associated with dotted

and one with primed indices. These groups each have nine bosonic and eight fermionic

generators, to be compared with the 38 bosonic and 32 fermionic generators of OSp(8∗|4).
Thus, half the supersymmetries and half the special supersymmetries are left unbroken.

Next, consider how H acts on the (2, 0) superspace with six bosonic coordinates, de-

noted by xαβ = −xβα, and sixteen fermionic coordinates, θα
a . The coordinate transforma-

tions induced by the full OSp(8∗|4) supergroup are given by [23, 26]

δxαβ = aαβ − ω [α
γ xβ]γ + λxαβ + 4cγδx

γαxβδ − iΩabη
[α
a θ

β]
b −

− cγδθ
γ · θ[αθβ] · θδ − iρc

γθ[α
c

(

2xβ]γ − iθβ] · θγ
) (3.7)

δθα
a = (ω α

γ − 4cγδx
αδ − 2icγδθ

α · θδ + 2iρc
γθα

c )θγ
a +

1

2
λθα

a +

+ ηα
a − Ωacρ

c
γ (2xγα − iθγ · θα) + vacΩ

cdθα
d ,

(3.8)

where the conventions for the various parameters may be found in ref. [23]. If we split the

indices on the coordinates and restrict ourselves to the transformations contained in H, we
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find that a configuration where

xα̇β́ = 0

θα̇

b́
= 0

θά
ḃ

= 0

(3.9)

is left invariant. This corresponds naturally to a flat two-dimensional surface embedded

in the six-dimensional space-time, which in addition breaks half the supersymmetry of the

theory and also breaks the R-symmetry group. The remaining bosonic symmetry transfor-

mations, contained in the supergroup H, are interpreted as conformal transformations on

the surface and rotations in the transverse space, together with the R-symmetry rotations

in the space transverse to Φ̂ab.

It is interesting to note that the surface specified in eq. (3.9) is necessarily associated to

a direction in R-symmetry space. This means that the presence of the surface automatically

breaks the R-symmetry group from SO(5) to SO(4). This phenomenon is a consequence

of the breaking of supersymmetry.

Let us investigate the properties of the supergroup H: The bosonic subgroup mentioned

above is SO(3, 1)×SO(3, 1)×SO(4), provided that the surface is spatial. This means quite

naturally that the bosonic subgroup of each of the two factors in H is SO(3, 1) × SU(2).

The most plausible supergroup with this bosonic subgroup is OSp(3, 1|2); the next step is

to fit the generators contained in ĴAB into this structure.

Leaving questions concerning signature aside, the supergroup OSp(4|2) is defined

through the commutation relations

[

A
α̇β̇

, Rȧ
γ̇,µ̇

]

= εγ̇(α̇Rȧ
β̇),µ̇

[

A
α̇β̇

, A
γ̇δ̇

]

= εγ̇(α̇A
β̇)δ̇ + ε

δ̇(α̇A
β̇)γ̇

[

Bµ̇ν̇ , R
ȧ
α̇,ρ̇

]

= ερ̇(µ̇Rȧ
α̇,ν̇)

[

Bµ̇ν̇ , Bρ̇σ̇

]

= ερ̇(µ̇Bν̇)σ̇ + εσ̇(µ̇Bν̇)ρ̇
[

C ȧḃ, Rċ
α̇,µ̇

]

= εċ(ȧR
ḃ)
α̇,µ̇

[

C ȧḃ, C ċḋ
]

= ε
ċ(ȧ

C ḃ)ḋ + εḋ(ȧC ḃ)ċ,

(3.10)

and the anti-commutation relation

{

Rȧ
α̇,µ̇, Rḃ

β̇,ν̇

}

= εȧḃεµ̇ν̇Aα̇β̇
+ εȧḃε

α̇β̇
Bµ̇ν̇ − 2ε

α̇β̇
εµ̇ν̇C

ȧḃ, (3.11)

where we note three three-component bosonic generators (denoted by A
α̇β̇

, Bµ̇ν̇ and C ȧḃ,

all symmetric) and one eight-component fermionic generator Rȧ
α̇,µ̇. The bosonic generators

appear with different weights in the right-hand side of the anticommutator in eq. (3.11).

Similar relations hold for the version with primed indices.

Let us see if we may fit these generators into the structure for ĴAB in eq. (3.6). This

procedure ultimately fixes the weights in the right-hand side of eq. (3.11) to these particular

values. Define

J ȧ
α̇ =

1

2

(

Rȧ
α̇,1 + Rȧ

α̇,2

)

J α̇ȧ = −1

4
εα̇γ̇

(

Rȧ
γ̇,1 − Rȧ

γ̇,2

)

,

(3.12)
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where we have let the µ̇-index take specific values. By requiring these generators to satisfy

eq. (2.2), we find that we need to take

J
α̇β̇

= −1

2
ε
α̇β̇

(B11 + 2B12 + B22)

J α̇β̇ = −1

8
εα̇β̇ (B11 − 2B12 + B22)

J β̇
α̇ = −1

2
εβ̇γ̇Aα̇γ̇ +

1

4
δ β̇
α̇ (B11 − B22)

J ȧḃ = −C ȧḃ.

(3.13)

In this way, we have constructed an explicit isomorphism between the unbroken subgroup

H ⊂ OSp(8∗|4) and the supergroup OSp(4|2) × OSp(4|2).
So far, we have considered a flat infinitely extended two-dimensional surface. This is in

fact a special case; in general we should consider closed surfaces, such as two-spheres. The

moduli space of possible such surfaces is parametrized by the coset OSp(8∗|4)/[OSp(4|2)×
OSp(4|2)], and has 20 bosonic and 16 fermionic dimensions.

4. The superconformal space

The purpose of this section is to investigate if there is another way, based on an eight-

dimensional formulation, of showing that the product in eq. (3.1) is associated with a

surface in six dimensions.

In ref. [19], the connection between the superconformal space (with eight bosonic

dimensions) and the (2, 0) superspace (with six bosonic dimensions) was accomplished by

requiring the fields to live on a projective supercone, defined by

IAByAyB = 0. (4.1)

An explicit solution to this condition is given by

ya =
√

2Ωabθβ
b yβ

yα =
(

2xαβ − iΩabθα
a θβ

b

)

yβ.
(4.2)

The consistency of these equations implies that xαβ and θα
a must transform according to

eqs. (3.7) and (3.8), respectively, if the yA coordinates are transformed as in eq. (2.3).

This indicates that we may identify these quantities with the usual coordinates in (2, 0)

superspace.

Let us define a new constraint, similar to eq. (4.1), but this time based on the product

in eq. (3.1). The most natural such condition is

ÎAByAyB = 0. (4.3)

If we combine this condition with the supercone constraint (4.1), we find two separate

equations:

2yα̇yα̇ + εȧḃy
ȧyḃ = 0

2yάyά + ε
áb́

yáyb́ = 0.
(4.4)

– 6 –
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In analogy with eq. (4.2), we write an explicit solution to these equations as

yȧ =
√

2iεȧḃθβ̇

ḃ
y

β̇

yα̇ =
(

2xα̇β̇ + εȧḃθα̇
ȧ θβ̇

ḃ

)

y
β̇
,

(4.5)

together with similar equations with primed indices. We see immediately that this defines

a surface with two bosonic dimensions, which also is described by eight fermionic variables.

This agrees with the results found in the preceding section and suggests that the surface

in (2, 0) superspace may be regarded as the intersection of the supercone (4.1) and the

hyper-surface (4.3) in the superconformal space.
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